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Abstract 

The estimation of normalized structure factors depends 
both on the method used to scale measured intensities 
and on the expectation values for those intensities. In 
this study different scaling functions are examined with 
respect to the 'true' normalized structure factors 
calculated for a range of refined crystal structures. The 
exponential scale k exp (Bs2), which includes an over- 
all rescale factor, combined with the random-atom 
expectation value, is shown to provide the most reliable 
triplet and quartet structure-invariant relationships. 

Introduction 

In the application of direct methods the reliability of 
structure-invariant phase relationships is assumed to be 
directly related to the magnitude of the normalized 
structure factor I Ehl. However, the relative importance 
of the precision of normalized structure factors to the 
success of structure-invariant phasing procedures is not 
well understood. The conditional probabilities of 
structure-invariant relationships are largely based on 
the magnitude of the quasi-normalized structure factor 

N 

fj  exp (2srh. xj) 
i D'<'~,i = , (1)  

while the normalized structure factor used in phasing 
procedures is estimated with the expression 

IF~'I K(h) 
IEhl = (iF~l>,n , (2) 

where I F~I is the measured structure factor, K(h) is a 
structure-factor scaling function and (IF21> is the 
atoms-at-rest expectation value of IF21. The impor- 
tance of I g'~,l to the theoretical distribution of the 
structure invariants suggests that an essential criterion 

t Deceased 27 December 1981. 
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for the 'correctness' of an estimated I Ehl value is its 
similarity to the 'true' normalized structure factor 

I ~elll = I De~l/e 1/2 

This assumption is the basis for an earlier study of 
normalization procedures by Ladd (1978). The most 
critical measure of an estimated normalized structure 
factor is the reliability of the structure-invariant 
relationships they form with each other. This is the 
principal test applied to normalized structure factors 
estimated in this study. 

The normalized structure factor squared I E21 is 
essentially the ratio of scaled measured intensity t l~'l 
to the intensity expected for a random distribution of N 
atoms at rest. If a particular measured intensity is 
significantly different from its expected random-atom 
value, then the value of IE21 will depart significantly 
from 1.0. The magnitude of this departure indicates the 
sensitivity of that reflection to non-random aspects of 
the structure, or, in other words, to the 'presence of 
structure'. Reflections with I Eh21 values much greater 
than 1.0 are of particular importance in direct methods 
because of their dominance as Fourier transform 
coefficients. Structure-factor magnitudes close to zero 
also contain significant structural information but 
because their phases are not as well defined, and their 
contribution to the Fourier transform is small, they are 
not generally used in phasing procedures. 

The different approaches currently in use for 
evaluating and applying the K(h) and (I F21 > compo- 
nents in the normalized structure-factor equation (2) are 
examined in this study. There are at least three ways of 
formulating the scaling function K(h). The first is the 
K-curve approach of Karle & Hauptman (1953) which 
evaluates K(h) as the monotonically decreasing func- 
tion best fitting the variation of IF~l/<lF21> °'5 with 
s 2. A second method, which is closely allied to the first 
is to represent K(h) as the exponential scale, 
k exp (Bs2); and a third approach allows for non- 
monotonic variations of K(h) with s 2. Supplementary to 
these basic approaches, the scaling function K(h) is 
usually adjusted to ensure that the mean IE21 is 1.0 for 
either all data, or for different reflection classes (Dewar, 
1970). 
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Limited tests on several scaling functions have 
already been reported by Ladd (1978). He concludes 
that a minimum-K-curve approach produces the best 
IEhl values; followed closely by the exponential scale 
k exp (Bs2). These findings were based on the corres- 
pondence between the estimated IEhf and I g'hl values. 
The validity of this conclusion makes the fundamental 
assumption that I Nhl values provide the most reliable 
phase relationships. This is not unreasonable since I g'/,I 
is the basis in the probabilistic methods of structure- 
invariant theory. Nevertheless, this theory has been 
derived largely for P I and P[  atomic distributions and 
it remains to be shown that I g°h I values necessarily 
provide the most reliable phase relationships for higher 
symmetries, and for a range of structure types. This 
study examines the reliability of Ig'hl in terms of the 
precision of the structure-invariant relationships, for a 
variety of test structures. 

Also encompassed in this study is an analysis of 
alternative approaches to calculation of the atoms- 
at-rest expectation value (IFh21). In the absence of any 
structural knowledge this expectation value is assumed 
to be the random-atom approximation, 

N 

< l F 2 1 ) = e l f ] ,  (3) 
J 

where N is the number of atoms in the cell. 
If conformational information on a fragment of the 

structure is available then the expectation value may be 
expressed as a Debye scattering equation (Debye, 
1915) 

M M sin 4nsdj, 
<IF~I> = gZ  Z f i f  k , (4) 

j k 4 nsdj, 

where M is the number of atoms in the fragment. 
When the orientation of the molecular fragment is 

known, the expectation value becomes (Main, 1976) 

(IFh21) = x'2 Vf i fkexp2n ih . (x jp - -Xk~ , ,  (5) 
J p 

where P is the number of point groups in the cell. 
When actual atomic coordinate information is 

available the expectation value is the atoms-at-rest 
structure factor squared given by 

<IF~I )=  v V f / e x p 2 n i h ,  x i , (6) 
J q 

where S is the number of equivalent positions. 
It would seem to follow from (3)-(6) that using the 

expectation value with highest information content in 
the normalization process provides improved estimates 
of normalized structure factors. Such a rationale 
presumes that knowledge of the structure provides 
more precise estimates of the 'true' normalized struc- 
ture factor and more reliable structure:invariant 

relationships. There is little direct evidence for this and 
Ladd (1978) has shown that the Debye expectation 
value reduces rather than enhances the precision of the 
estimated I Eh I. An explanation for this is that when the 
random-atom expectation value is used, the lEVI values 
differing significantly from 1.0 will contain more 
(non-random) structural information. On the other 
hand, if the Debye expectation value (4) is used, 
structural contributions due to short-range trans- 
lational symmetry tend to be suppressed in the resulting 
I Ehl values. In this study we examine these con- 
clusions in terms of the precision of the structure- 
invariant relationships. 

Test structures 

The refined structures of eleven organic and inorganic 
compounds are used in this study to test the different 
scaling functions. Details of these structures are given 
in Table 1 and their molecular configurations are 
shown below. 
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The test structures were selected to provide a range 
of space groups, centricity, and chemical composition. 
Their data sets range from extensive 2 (Sma X = 0.42) to 
limited 2 (Sma x = 0" 22), and represent data collected from 
both strongly and weakly diffracting crystals. All 
structures were refined by conventional least-squares 
techniques to R values given in Table 1. 

HCPP  is a penta-substituted cyclopentadiene 
derivative, and K C P P  is its potassium salt. The former 
crystallizes in P i  and the latter in Pcab. CLEPX and 
BEKA4 crystallize in P i .  The former is a small 
molecule with a chlorine atom and the latter has two 
molecules per asymmetric unit. STIK4 is a light-atom 
structure in the polar space group P21. PDCPS,  
C A N O N 2 ,  and ANTH1 belong to P2, /c .  PDCPS is a 
heavy-atom structure with an extensive data set. 
C A N O N 2  is a highly ordered structure with a pre- 
dominant hexagonal motif and has a limited data set. It 
also has a history of direct-method failures (Hall, 
Raston & White, 1978). ANTH1 is hypercentric. 
CORT,  a steroid, and TEMPL, a natural product, both 
belong to P2~2~2,. The CORT data are supplied as the 
standard light-atom test deck for the M U L T A N 8 0  
system (Main et al., 1980). TEMPL contains a heavy 
atom. K22BR is a light-atom structure in space group 
Iba2 and has a very limited data set. 

The data of test structures were processed with the 
normalization routine EI/'AL, the structure-invariant 
generation routine S I N V A R  and the phase-analysis 
routine P H I S I N  (Hall, 1978). Another routine 
E S C A N  (Hall & Subramanian,  1980) was used to. 
analyse the dependency of estimated IEhl values and 
the calculated I~hl on a variety of parameters. 

Comparison of  scaling functions 

Two types of scaling functions are used widely in 
normalization procedures. One is the exponential scale 
k exp (Bs2), often referred to as the 'linear'  scale 
because of its linear relationship in a Wilson plot 
(Wilson, 1942), and the other is the 'profile scale'. 

The profile scale describes the variation of the mean 
values of I F~,I/<IF~,I> with s 2. If this scale takes the 
form of a monotonically decreasing function, it is 
equivalent to the K curve of Karle & Hauptman 
(1953). In this form the profile scale is often equivalent 
to the linear scale of the Wilson plot (Karle, 1976). If, 
however, the profile scale is to account for short-range 
variations with s 2 due to radial scattering effects it 
may be represented by a polynomial-type function, as 
in the case of the M U L T A N  K curve (Main et al., 
1980), or as a smooth curve that follows the significant 
variations in In (IF21/< IF21 >). 

In this study, both the exponential and profile scaling 
functions are examined. The minimum K-curve method 
of Ladd (1978) was not studied, principally because of 
its close similarity to the exponential scale but also 
because there seems less theoretical justification for its 
use. The radial effects of short-range translational 
symmetry on the scattering process result in decreases 
as well as increases of the mean radial intensities 
defined by a random-atom structure. Since the random- 
atom structure is the basis for calculating the quasi- 
normalized structure factor I~1 ,  it is logical that the 
function K(h) should attempt to scale values to the 

Table 1. Test structures 

HCPP 
CLEPX 
BEKA4 
STIK4 
PDCPS 
CANON2 
ANTH 1 
TEMPL 
CORT 
K22BR 
KCPP 

g = ZIIFo I - iFclllY.IFol. D is the overall temperature factor. 

Formula Space group R value /) (/~2) S2max Reference 

C I sH 16010 P [ 0-037 4.6 0.29 (a) 
C3oH18C14 P[ 0-037 4.0 0.25 (a) 
C58H90 N206 Pi 0-055 4.5 0.24 (a) 
C 14H 1806 P21 0.050 4.8 0.36 (a) 
C42HaTC12F6PPdSb2 P2 l/c 0.051 3.6 0.42 (a) 
C is H,sO5 P21/n 0.058 3.8 0-24 (b) 
C 34H2604 P2 l/c 0"034 4" 5 0"36 (a) 
C21H34CIN304 P212121 0"056 4"4 0"29 (a) 
C21H2sO5 P212,21 0.058 3-3 0.32 (c) 
C 35H4806 Iba2 0-049 4.8 0.22 (a) 
C 16 HI9KOll Pcab 0.042 3-2 0.36 (a) 

References: (a) Skelton & White (198 I); (b) Hall et al. (1978); (c) Declercq, Germain & Van Meerssche (1972). 



580 N O R M A L I Z E D  S T R U C T U R E  F A C T O R S .  I 

median line between these positive and negative fluc- 
tuat ions;  or, when it is required that  the Debye  
scattering effects be reduced in the estimated I Ehl 
values, the profile form of K(h) should be encouraged 
to follow these fluctuations. The concept  of a minimum 
K curve is therefore difficult to justify. Certa inly,  the 
K-curve method of Karle & H a u p t m a n  (1953) uses a 
mean, not a minimum, fit of  the data  points and this is 
equivalent to the exponential  scale k exp (Bs2). 

The above methods for evaluating K(h) do not 
require that  the overall mean value of  I E~t be 
necessari ly 1.0. This is, however,  a normal iza t ion 
requirement  and is easily achieved by rescaling the 
initial estimates of lEVI calculated with K(h) with the 
factor ) m/)_j, m lEVI. When this factor is applied to all 
da ta  the process is referred to as overall rescaling. 
Alternatively,  if it is applied to individual classes of 
reflections it is referred to as index rescaling (Dewar,  
1970). Index rescaling ensures that  each reflection 
group has a similar spectrum of  large and small I Eh I 

values and therefore each group has an equivalent  
influence on the phasing process. 

It is well recognized that  the application of  index 
rescaling can be of benefit in the analysis  of s tructures 
with a predominant  subunit. The presence of a 
substructure exaggerates the intensities in certain 
reflection classes and makes  the elucidation of s u p e r  
structure difficult. However ,  index rescaling does have 
its drawbacks.  In particular,  its use without  careful 
considerat ion of scaling effects removes from the 
estimated I Eul values structural information that  is 
then inaccessible to the phasing process. The validity of  
routine application of index rescaling and its effect on 
the reliability of s tructure-invariant  relationships are 
also considered in this study. 

To compare  the various scaling options four  dif- 
ferent estimates of IEhl were used. These est imates were 
calculated with the program E V A L  (Hall,  1978). 

Estimate I EhI~ is calculated with the exponential  
scale function k e x p ( B s  z) and the r andom-a tom 

Table 2. Comparison of  Ige(h)l and tE,(h)l  

All values of IEn(h) l are estimated using the random-atom expectation value except for the values in brackets where the Debye value 
was employed. AE~ and AEZ,/g 2 are the mean difference and the mean fractional difference between the estimated IE,(h)l values and 
the calculated I ~(h) l value, nref is the number of reflections used to calculate the means. 

(a) For I g e (h)] > 0 (all data) 

nref AE~ AE~/~ 2 AE~ AE~/~ 2 AE] AE]/~ 2 AE] AE]/~ "2 
HCPP 2167 0-33 0.54 0.39 0.57 0.36 0.56 0.40 0.59 
CLEPX 2138 0.26 0.42 0.30 0.45 0.27 0.43 0.31 0.46 
BEKA4 5413 0.39 0.67 0.44 0.69 0.40 0.68 0.45 0-70 
STIK4 1099 0.31 0.44 0.36 0.48 0.32 0.45 0.36 0.49 
PDCPS 7493 0.32 0.63 0.33 0.64 0.35 0.67 0.35 0.67 
CANON2 1652 0.33 0.42 0.43 0.52 0.38 0.50 0.47 0.60 

(0.33) (0.45) (0.41) (0.51) (0.40) (0.52) (0.46) (0.59) 
ANTH1 2196 0.31 0.57 0.38 0.65 0.31 0.57 0.39 0.65 
TEMPL 1874 0.35 0.56 0.39 0.61 0.36 0.57 0.40 0.61 
CORT 1603 0.29 0.41 0.35 0.49 0.31 0.45 0.37 0.52 

(0.31) (0.46) (0.35) (0.49) (0.33) (0.47) (0.37) (0.52) 
K22BR 1832 0.43 0.60 0.48 0.65 0.48 0-60 0.49 0.66 
KCCP 3943 0.36 0.80 0.38 0.81 0.40 0.87 0.41 0-87 

Mean 0.34 0.55 0.39 0.60 0.36 0.58 0.40 0.62 

(b)For I~(h)l > 1.0 

nref AE~ AE~/~ "z AE~ AE~/g 2 AE~ AE]/~ 2 AE] AE]/~ "2 
HCPP 702 0.69 0.30 0.83 0.34 0.75 0-31 0.86 0.35 
CLEPX 700 0.49 0.22 0.61 0.27 0.52 0.23 0.63 0.27 
BEKA4 1699 0.80 0.32 0.94 0.37 0.83 0.33 0.97 0.38 
ST1K4 404 0.52 0.25 0.62 0.29 0.54 0.25 0.63 0.30 
PDCPS 2180 0.68 0.28 0.69 0.29 0.74 0.31 0.75 0.32 
CANON2 446 0.87 0.31 1.15 0.42 1.01 0.36 1.24 0.44 

(0.85) (0.34) (1.08) (0.40) (1.05) (0.37) (1.20) (0.43) 
ANTHI 574 0.77 0.29 0.99 0.36 0.77 0.30 0.99 0.37 
TEMPL 685 0.58 0.28 0.65 0-32 0-58 0.29 0.66 0.32 
CORT 549 0.55 0.27 0.65 0.31 0.57 0.28 0.70 0.33 

(0.57) (0.28) (0.66) (0.32) (0.60) (0.29) (0.71) (0-34) 
K22BR 678 0.76 0.36 0.86 0.40 0.76 0.36 0.86 0.40 
KCPP 1085 0-68 0.30 0.76 0.33 0.78 0.34 0.83 0.36 

Mean 0.67 0.29 0.80 0.34 0.71 0.31 0.83 0.35 
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expectation value. The values of B (see Table 1) used in 
this function were obtained from a Wilson-plot fit based 
on positioned-atom expectation values [see (6)1 cal- 
culated from the refined atomic coordinates. The scale 
k is evaluated by overall rescaling. 

Estimate I Ehl 2 is calculated from a profile scale and 
the random-atom expectation value (lEVI). The profile 
scale takes the form of 41 values of K(h)i (i = 1 to 41), 

Methods for  comparing I E h I and I ~C~hl 

The rationale for using the calculated structure 
factor I~hl as a posterior measure for the correct 
normalized structure factor has already been discussed. 
In this study, each of the four estimates of I Ehl are 
compared with I~hl using the program E S C A N  (Hall & 
Subramanian,  1980). The definitions of mean dif- 
ferences AE, and AE 2 are 

K(h),=[ Z IF~I ],  
(7) 

averaged for shells of reciprocal space bounded by 
equal intervals of s 2 between 0-0 and Sma x 2  . These shells 
were symmetrically overlapped to minimize the 
statistical fluctuations and to provide a relatively 
smooth variation over the 41 ranges. The degree of 
overlap ensures at least 200 contributing reflections to 
the mid-range (i = 20). The profile scale was applied by 
a simple linear interpolation of the 41 values of K(h), 
and was followed by overall rescaling. 

Estimates of  I E hI 3 and I E, I 4 a r e  calculated using 
identical procedures to I Ehl; and IEhl 2, respectively, 
except that overall rescaling is replaced with index 
rescaling based on the eight separate hkl-parity groups 
(eee, eeo . . . .  , ooo). 

and 

~ E . =  I ( , E . I ) . - ' S h ' I  

AE, ~ _--I(IE~I),--IS211. 

(8) 

(9) 

The values of AE 2 and AE~II~I  are shown in Table 
2 for I~eh I > 0.0 and I~eh I > 1.0. The differences are 
calculated as the mean of the sum individual differences 
{i.e. [~,mAE~]/[~,m]i and [~ mAE2/Ig21]/[~, m]} for 
each of the 41 shells of reciprocal space. These show 
that the mean difference, AE 2 and AE2/I~21, between 
I ~ 1  and I ~ 1  n are smallest for IEhl~, the estimate 

based on the exponential scaling function, and an overall 
rescale. The average mean of the differences for all test 
structures (Table 2) indicates that the above com- 
bination produces IEhl values closest to  I~h l ,  whereas 
the combined profile scale and index rescale produces 
the worst agreement. 
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Fig. 1. Plots of IE2(h)l and l ~ 2 ( h ) l  v e r s u s  s 2 for the structures (a) BEKA4, (b) CANON2, (c) CORT and (d) KCPP. The expectation value 

used in estimates of I E2(h)l is based on the random-atoms-at-rest approximation. The numbers 1-4 correspond to the subscripts of the 
four different estimates of tE2(h)f (see text). The solid lines connecting the points denoted by '0' represent the mean values of the 'true' 
normalized structure-factor squared. If data points overlap, the largest number has precedence. The vertical dotted line is at s 2 = 0.18. 
The horizontal dotted line is at I E21 = 1.5. 
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The difference between I~1  and IE21, as a function 
of  s 2 is illustrated in Figs. 1, 2, and 3 for the test 
structures BEKA4,  C A N O N 2 ,  CORT, and KCPP. 
These four test structures were selected as being 
representative for a range of  structural types. Fig. 1 
shows the variation of  Ig'21 with s 2 as a solid line 
(connecting '0' data points) with different lEE1 esti- 

mates as data points numbered 1, 2, 3, and 4. In all plots 
the highest numbered data points have precedence and 
this means that a 3, for instance, will obscure a 2, 1, or 
0 in the same position. 

The relative variation of I~hl and IEhl is consistent 
for all of the eleven test structures. In all cases there is a 
relatively close agreement between Ig'hl, IEhl~ and 
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Table 3. Mean systematic deviation of E(h) from ~'(h) 

All values of IEn(h)l are estimated using the random atom expec-tation value. 

z t~ ' , , (h )  = ~ : ,  [ I E , , ( h ) l -  f _ - -  

(a) For I~(h)l > 0.0 (all data)* (b) For ge(h) > 1.0" 

h E ,  1 z~.E I h~ , ,  2 /1~-, 2 h ~ '  3 z~.E2 A j ~ 4  z~j~4 2 z ~ '  1 A ~  "2 A.~" 2 /1~"  22 z~E' 3 z J ~  '2 ZJE ' ,  / [ L "  42 

HCPP 0.25 0.46 0.52 1.36 0.25 0.48 0.52 1.38 HCPP 0.67 1.76 1.22 3.89 0.71 1.88 1.23 4.00 
CLEPX 0.18 0.34 0.39 0.91 0.17 0.32 0.39 0.92 CLEPX 0.49 1.16 0.85 2.49 0.51 1.17 0.85 2.49 
BEKA4 0.23 0.52 0.77 1.97 0.22 0.52 0.78 2.01 BEKA4 0.99 2.45 1.62 5.15 1.00 2.51 1.64 5.25 
STIK4 0.29 0.45 0.64 1.45 0.27 0.45 0.64 1.46 STIK4 0.61 1.47 1.22 3.52 0.61 1.52 1.25 3.62 
PDCPS 0.15 0.29 0.21 0.49 0.19 0.61 0.20 0.56 PDCPS 0.36 0.66 0.54 1.42 0.59 0.87 0.51 1.52 
CANON2 0.61 0.87 0.91 2-24 0.47 0-89 0.92 2-29 CANON2 1.25 2-63 1.96 6.71 1.29 3.38 1.92 6.53 
ANTH1 0.12 0.28 0.67 1.78 0.12 0.30 0.67 1.78 ANTH1 0.38 0.88 1.42 5.32 0.39 1.00 1.41 5.25 
TEMPL 0.27 0.67 0.73 1.66 0.27 0.66 0.73 1.66 TEMPL 0.70 1.72 1.34 3.68 0.71 1.71 1.33 3.66 
CORT 0.25 0.74 0.77 1.72 0.25 0.72 0.82 1.92 CORT 0.76 2.19 1.09 3.42 0.72 2.03 1.23 3.93 
K22BR 0.43 0.83 0.90 2.05 0.43 0.84 0.90 2.02 K22BR 1.13 2.75 1.45 4.19 1.15 2.76 1.46 4.14 
KCPP 0.17 0.53 0.50 1.30 0.20 0.54 0.51 1.25 KCPP 0.37 0.75 1.40 3.99 0.41 0.88 1.33 3.81 

* Numbers of reflections used to calculate the means are as given in Table 2. 
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I Ehl ~. This correspondence is also evident in the plots 
of AE 2 and AE2/I~21 versus s 2 (see Figs. 2 and 3). Both 
these plots show the larger differences of AE~ and AE~ 
arising from the profile scale. The overall increase in 
these differences as a function of s 2 is the subject of 
another study (Hall & Subramanian, 1982b). 

It should be stressed that the difference measure- 
ments shown in Figs. 2 and 3, and listed in Table 2, 

contain both the random deviations associated with the 
individual estimates of I~hl and IEhl, and the sys- 
tematic deviations of the mean IEhl from the mean I~eh I. 
These measurements constitute the total  deviat ion - 
random plus systematic - associated with the estimates 
of lEvi. The systematic component is present because 
the mean value of I Ehl, in each range often departs 
significantly from the mean I~hl for that range. That is, 
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the first moment of the differences, AEh = IEh I -- IEhl, 
representing the systematic bias of the measurement, is 
not zero. This systematic bias component is evident in 
Fig. 1 and is summarized in Table 3 as the overall mean 
difference, A/~h, for all ranges. This table shows clearly 
the extent of the systematic differences between 
calculated I g'hl and the various estimates of IEhl. 

The agreement between IEhl and I g'hl was also tested 
by plotting the difference parameters against IFhl, I~'hl, 
and ~2. A modified version of the program E S C A N  
(Hall & Subramanian, 1980) was used to plot IEhl,,, 
A E  n and AEn/l~hl versus IFhl, and versus  Ig'hl, 

2 2 AEn/ l~h l  versus  trFh/IFhl; and A E n / l ~ h l  versus  
a21F21/IF21. A selection of these plots (IEhl, A E  n, and 
AEn/ l~h l  versus  I~hl) is shown in Figs. 4, 5, and 6, 
respectively, for the structures BEKA4, CANON2,  
CORT, and KCPP. 

In Fig. 4, 1:1 agreement between IEhl and Ig'hl is 
shown as a solid line. The agreement for the mean 
values IEhl has little systematic bias for IEhl < 2.0. 
However, above this value the I Ehl values tend to be 
lower than corresponding Ig'hl values, with the large 
differences occurring for the estimates I Eh 12 and I Eh 14. 
The magnitudes of these differences with respect to I g'hl 
are illustrated in Figs. 5 and 6. 

The conclusions to be drawn from these com- 
parisons are inescapable. Firstly, the exponential scale 
function results in IEhl estimates that are closer to I ~'hl 
than those estimated from the profile scale. Secondly, 
the overall rescaling provides better correlation between 

l~hl and IEhl than the index rescaling. The tests for all 
eleven structures are unanimous in this verdict. 

The choice of expectation value (I F~I ) 

The random-atom expectation value cX f~ was used in 
all of the above scaling function tests. The question of 
whether this is necessarily the best practice, or provides 
the most reliable I Ehl's for a phasing procedure, must 
now be answered. 

It is important to emphasize that phase information 
calculated from partial structure knowledge and used 
with structure-invariant relationships is not in question 
here. This has been shown to provide substantially 
improved reliability in the application of these relation- 
ships (Main, 1976; Hall, 1978). What is at issue is the 
practice of estimating I E hl's with other than random- 
atom expectation values and thus modifying the 
structural information passed on to the phasing 
process. 

Only the Debye expectation value [see (4)] was 
tested in this study. There were several reasons for this. 
The molecular conformation is usually the only 
available structural information. It is also the pro- 
cedure recommended in some programs to improve 
normalization. Furthermore, the phase information 
extractable from the Debye expression for use in the 
structure-determination step is negligibly small and 
need not be considered in this assessment. 
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Some of the rationale opposed to the use of the 
Debye expectation value has already been discussed. 
Previous tests (Ladd, 1978) suggest that indiscriminate 
use of structural information in the estimation of I Ehl 
values can be detrimental. The results of the scaling 
tests described above also lead, albeit indirectly, to a 
similar conclusion. This is because the application of a 
profile scale is equivalent to the use of the Debye 
expectation value (see Fig. 7). The profile scale 
provided consistently less correlation between I Ehl and 
I ghl than alternative approaches (vide supra). 

The CANON2 and CORT test data were used for 
the comparison of the Debye and random-atom 
expectation values. These are typical of structures for 
which reliable conformational information is often 
available. Only the rigidly bound non-hydrogen atoms 
were included in the calculation of the Debye expec- 
tation value. Fig. 7 shows the Wilson plots for both the 
random-atom and Debye expectation values. In Table 
2, values in brackets correspond to the mean values of 
A E  2 and AE2,,/I~'~,I for the estimates based on the 
Debye expectation value. Comparison of these values 
for the four I Ehl, estimates, and the two distinct 
expectation values, indicates that the use of random- 
atom expression (3)provides I Ehl values closer to I g'hl 
than the Debye expression (4). It also confirms that the 
combination of exponential scale function and overall 
rescale produces consistently better correlation between 
IEhl and Ighl. These conclusions are reinforced by the 
plots of IEh21 and I~1 versus s 2 (see Fig. 8) and by a 
comparison with the equivalent plots of Fig. 1. 

In summary these tests support the conclusions of 
Ladd (1978) that the routine application of the Debye 
expectation value is unwarranted in normalization 
procedures. 

The reliability of phase relationships 

In the preceding two sections it was observed that 'best' 
I Ehl values are obtained by applying the combined 

exponential scale, random-atom expectation value and 
overall rescale factor. In this part of the study it will be 
shown that the 'true' normalized structure factor I~h21, 
and the IEhl estimate closest to it, provide the most 
reliable structure-invariant relationshii~s. 

The triplet and quartet structure-invariant phase 
relationships 

3 

~'3 = ~p(h,)+ ~p(h 2) + tP(h3); ~ h, = 0 (10) 

4 

~,4=~p(h,) + ~p(h:) + ~P(h3) + ~P(h4), Z h . = O  ( l l )  

were generated for each structure, and for each 
estimate of IEhl,,, using the program S I N V A R  (Hall, 
1978). 

The probability thresholds, 

A 3 : 2N-i /2 lEh,  Eh2 gh31 (12) 

B 4 : 2N -] IEh, Eh2 Eh~ Ehl,  (13) 

used in each case and the number of triplets and 
quartets generated are shown in Table 4. For quartets, 
only those cross-vector sums 

X =  IEh,+h ' + Eh,+h ' + Eh,+h [ (14) 

(Hauptman, 1975) outside a preset 'window' defined 
by values X r and X s were analysed (see Table 4). 

The structure-factor phases calculated with the 
refined coordinates were substituted into (10) and (11) 
to obtain ~3 and ~4 (base modulo 270. The ~4 values 
were analysed in two categories those with X > X r 
(referred to as 'positive quartets' PQ) and those with X 
< X B (referred to as 'negative quartets' NQ).  For large 
B 4 values the expected value of ~4 for PQ's,  ( I ] ] 4 )  , is 
zero, and for NQ's  the value of (~4) is 7r (Hauptman, 
1975). Similarly, for large A3-valued triplets the value 
of (~3) is assumed to be zero. 

One measure of the suitability of I Ehl'S in phasing 
procedures may be gauged from the percentage of 
structure-invariant violations. A violation occurs if the 
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~, value calculated from the refined phases of the 
known structure exceeds its corresponding expectation 
value (~,) by more than ~r/2. Table 5 lists this 
information for the triplets and quartets generated for 
I~'hl and the four different estimates of I Ehl. With few 
exceptions, the relationships resulting from the I~"hl, 
I Ehll, or I Ehla values produce fewer violations than 
I Ehl  2 or I Ehl  4. This is borne out by the mean 
percentages listed at the bottom of Table 5 which 
indicate that for these test structures IEhl 1 and I~hl are 
of similar reliability. The use of Debye expectation 
values to evaluate I Eh I,, results in some decreases in the 
number of violations for CANON2 and CORT (see 
bracketed values in Table 5) but on the whole their 
reliability is less. In assessing these results, it is 
important to remember that percentage violations may 
not be well suited to testing non-centrosymmetric 
structures with unrestricted phases. In addition, they do 
not take into account the expected reliability of 
individual invariants in the phasing process. For 
instance, a triplet with A = 5.0 contributes to the 
violation statistics identically to one with A = 1.0. This 
can be misleading because the former triplet is usually 
more heavily weighted in the phasing process, par- 
ticularly in the critical early stages. 

A better measure of the reliability of phase relation- 
ships is the weighted root-mean-square difference 
between the calculated ~, and the (~,). 

r .m. s .d ,  ig3= [~.A3(v/3-(t/j3))2/~ A3 ]1/2 (15) 

r.m.s.d. ~g4 = [Y B4(~'4-  (~'4))2/X B4] ~/2. (16) 

In this test the probability values A 3 and B 4 [see (12) 
and (13)] which play such an important role in most 
phasing processes are effectively taken into account. 
With the r.m.s.d. ~, values, errors in invariant relation- 
ships of high expected reliability (based on A 3 or B4)  
are given highest weight. These results (see Table 6) are 
therefore a more realistic guide to the effectiveness of 
the scaling functions or expectation values in providing 
more reliable structure invariants. The mean values 
given at the bottom of Table 6 show clearly that the 
'true' normalized structure factor produces the most 
reliable structure-invariant relationships and that the 
estimated value closest to it, I Ehl 1, is superior to other 
estimates. 

Conclusions 

The principal aim of this study was to identify the form 
of a scaling function that provides the most reliable 
I Ehl values for use in phasing procedures. A related 
objective was to examine the form of the expectation 
value (IF21) to be used in the Wilson plot. To achieve 
these goals, various scaling functions and expectation 
values were tested against eleven refined structures in 
two separate stages. In the first stage the correlation 
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T a b l e  5. Percentage o f  invariants violated 

All values of IE,(h)J are estimated using the random-atom expection value, except for values in brackets where the Debye value 
was employed. A structure invariant is designated as violated if I ~ - (q/) I > zr/2. Ttriplets; PQ positive quartets; NQ negative quartets. 

lYl I E t I I E z I I E 31 I E41 
Test T PQ NQ 

HCPP 3.9 0.0 1.9 
CLEPX 0.8 0.0 12.3 
BEKA4 6.9 1.2 39.7 
STIK4 7.4 1.6 10.3 
PDCPS 0.0 0.0 - -  
CANON2 10.5 0.8 0.0 

ANTH 1 7.8 0"0 4.9 
TEMPL 6.6 4.5 26.2 
f O R T  11.3 5.3 28.2 

K22BR 12.8 - -  - -  
KCPP 3.0 2.5 30.6 

Mean 6.5 1.6 15.4 

T PQ NQ T PQ NQ T PQ NQ T PQ NQ 

6.0 0.1 2.7 6.3 0.2 5.4 5.5 0.0 6.4 6.5 0-0 10.3 
2.4 0.6 12.7 2.4 0.5 10.9 2.5 0.7 22.2 2.1 0.8 8.9 
4.8 0.6 35.3 7.6 2.7 37.2 5.2 0.7 41.3 7.4 3.6 38.3 
7.9 3.9 75.0 9.2 7.1 25.0 7.8 3.7 19.6 10.1 5.8 24.4 
0.0 0.0 2.6 0.0 0.0 - -  0.0 0.0 - -  0.0 0.0 - -  
9.8 0.4 1.6 11.5 2.7 15.9 10.9 0.8 16.8 12.2 2.2 31.6 

(9.8) (I.1) (11.2) (11.5) (1.7) (6.6) (10.9) (1.0) (37.2) (12.6) (2.0) (37.3) 
6.0 0.0 1.6 7.4 0.2 18.1 6.3 0.0 6.2 7.7 0.4 17.2 
6.3 2.4 35.2 8.8 3.2 51.8 6.7 2.1 41.0 8.8 5.6 56.2 

10.6 4.5 52.4 12.8 0.0 49.0 11.0 4.0 71.0 14.1 0.0 53.1 
(11.6) (0.0) (50.0) (13.3) (0.0) (48.9) (13.3) (3.8) (63.1) (14.2) (12.9) (30.8) 

7.4 - -  - -  12.3 - -  - -  7.5 - -  - -  12.2 - -  - -  
4.1 5.7 41.9 3.7 20.9 28.0 8.3 4.0 41.9 8.1 12.0 37.1 

5.9 1.8 20.4 7.5 3.8 23.2 6.5 1.6 26.6 8.1 3.0 27.7 

Tab le  6. Weighted r.m.s.d, v/ o f  invariants 

All values of I E,,(h) I are estimated using the random-atom expectation value, except for those in brackets where the Debye expectation 
value was employed. The r.m.s.d, value [see (15) and (16)1 for triplets (7) and quartets (Q) are in degrees. 

ILel [E] I I E 21 I E 31 I E 41 
Test T Q T Q T Q T Q T Q 

HCPP 21. 1. 29. 2. 31. 4. 28. 4. 32. 7. 
CLEPX 5. 6. 13. 10. 12. 5. 13. 11. 11. 6. 
BEKA4 27. 71. 19. 48. 29. 57. 14. 28. 28. 63. 
STIK4 47. 39. 48. 48. 52. 49. 47. 52. 52. 50. 
PDCPS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
CANON2 42. 4. 37. 3. 42. 16. 43. 8. 48. 16. 

(38.) (8.) (43.) (11.) (42.) (23.) (51.) (17.) 
ANTH 1 28. 2. 35. 1. 39. 17. 34. 3. 40. 15. 
TEMPE 46. 36. 47. 33. 52. 75. 47. 43. 43. 85. 
f O R T  54. 47. 55. 45. 58. 48. 56. 66. 66. 73. 

(57.) (46.) (59.) (50.) (58.) (65.) (61.) (63.) 
K22BR 51- - -  44. - -  48. - -  44- - -  50. - -  
KCPP 20- 37. 24. 71. 21. 81. 38- 76. 76. 86. 

Mean 31. 24. 32. 26. 35. 35. 34. 32. 41. 40. 

b e t w e e n  t h e ' t r u e '  n o r m a l i z e d  s t ruc tu re  fac to r ,  I~hl,  and  
each  o f  the  I Ehl va lues  e s t ima t ed  f rom the  c o m -  
b ina t ions  o f  e i ther  the  exponen t i a l  scale  or  profi le scale,  
a n d  overa l l  or  index resca le  p r o c e d u r e ,  w a s  s tudied.  In 
the  s e c o n d  s tage,  the rel iabi l i ty o f  t r iplet  and  qua r t e t  
s t r u c t u r e - i n v a r i a n t  p h a s e  re la t ionsh ips  g e n e r a t e d  bo th  
f r o m  the  ca l cu la t ed  Ig'hl and  the  e s t ima ted  va lues  o f  
I Eh I was  inves t iga ted .  

F o r  all test  s t ruc tu res  the I Ehl va lues  e s t ima t ed  us ing 
the  exponen t i a l  sca le  func t ion  were  cons i s t en t ly  c loser  
to I g'hl t han  those  e s t ima t ed  with  the  profile scale.  It is 
n o t e d  tha t  the d i s c r epanc i e s  be tween  I g'hl and  the  
d i f ferent  e s t ima tes  o f  IEhl usua l ly  inc rease  wi th  I g'hl, 
and  it is the  la rges t  I E hi va lues  tha t  are  of ten  used in 
the  phas ing  p r o c e d u r e s !  The  c o m b i n a t i o n  o f  exponen -  
tial scal ing func t ion ,  r a n d o m - a t o m  e x p e c t a t i o n  value ,  

and  overa l l  r e sca le  w a s  f o u n d  to p rov ide ,  in tha t  o r d e r  
o f  i m p o r t a n c e ,  I Ehl va lues  tha t  h a d  cons i s t en t ly  be t te r  

a g r e e m e n t  wi th  the  ca l cu la t ed  va lues  o f  I g'hl. T h e  
ana lys i s  o f  t r iplet  and  q u a r t e t  s t ruc tu re  inva r i an t s  
c o n f i r m e d  t ha t  Ig'hl and  IEhl 1 are,  indeed ,  m o s t  rel iable  
for  m e t h o d s  b a s e d  on these  re la t ionsh ips  and ,  by 
impl ica t ion ,  for  m e t h o d s  tha t  also use s t ruc tu re - semin -  
va r i an t  re la t ionsh ips .  

It shou ld  be e m p h a s i z e d ,  h o w e v e r ,  t ha t  a funda-  
m e n t a l  a s s u m p t i o n  in this c o n c l u s i o n  is t ha t  the  
s t r uc tu r e - i nva r i an t  r e la t ionsh ips  with the  h ighes t  over-  
all rel iabil i ty will p rov ide  the  best  c h a n c e  for  success  in 
a typ ica l  d i r e c t - m e t h o d s  p r o c e d u r e .  This  shou ld  no t  be 
in te rp re ted  to  m e a n  tha t  the  m o s t  re l iable  set o f  
i nva r i an t s  will always prov ide  the  'bes t '  so lu t ion ,  or  
even  any  solut ion,  for  a given s t ruc tu re  and  a given 
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phasing procedure. The uncertainty in individual 
invariant relationships and the relative instability of 
existing phasing algorithms makes it possible for 
less-reliable invariants to succeed occasionally where 
more precise sets have failed. Nevertheless, it must 
remain true that the most precise invariants have a 
statistically better chance of providing a solution 
independent of the methods used to apply these 
invariants. 

In summary,  this study has shown that, for the 
eleven structures examined, normalized structure fac- 
tors, estimated from a Wilson plot using an exponential 
scaling function, the overall rescale and the random- 
atom expectation value are best suited for use in direct 
methods. 

The authors wish to acknowledge the assistance of 
the Australian Research Grants Committee (Grant: 
C7915302) during the tenure of this study. 
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Abstract 

A reliable estimate of the overall temperature factor B 
is shown to be important to the calculation of 
normalized structure factors, and to the application of 
structure-invariant phasing methods. Methods for 
obtaining improved estimates of B from the Wilson plot 
procedure are examined. The use of Bayesian statistics, 
the inclusion of missing data, the application of 
least-squares weights and the compensation for Debye 
scattering effects in the Wilson plot are considered. 
Estimates of B are compared for fourteen refined 
structures, including three proteins. 
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Introduction 

The standard method for estimating the overall 
temperature factor B and the structure-factor scale k 
from measured intensity data is by a linear least- 
squares fit to data in a Wilson plot (Wilson, 1942). In 
this plot of ln[IF~,I/(IF~,I)] versus s 2 the slope of the 
fitted line is --2B and the intercept at s 2 = 0 is - 2  In (k). 
Because the Wilson-plot method is simple and com- 
putationally convenient, it is widely used in many 
crystallographic laboratories for scaling data. It is 
therefore surprising that the computer programs 
applying this technique often produce quite different 
estimates of B and k from the same data. In fact, it is 
not uncommon for estimates to differ by as much as a 
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