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Abstract

The estimation of normalized structure factors depends
both on the method used to scale measured intensities
and on the expectation values for those intensities. In
this study different scaling functions are examined with
respect to the ‘true’ normalized structure factors
calculated for a range of refined crystal structures. The
exponential scale k exp (Bs?), which includes an over-
all rescale factor, combined with the random-atom
expectation value, is shown to provide the most reliable
triplet and quartet structure-invariant relationships.

Introduction

In the application of direct methods the reliability of
structure-invariant phase relationships is assumed to be
directly related to the magnitude of the normalized
structure factor |E,|. However, the relative importance
of the precision of normalized structure factors to the
success of structure-invariant phasing procedures is not
well understood. The conditional probabilities of
structure-invariant relationships are largely based on
the magnitude of the quasi-normalized structure factor

N
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while the normalized structure factor used in phasing
procedures is estimated with the expression

LF'l K(h)
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where | F{"| is the measured structure factor, K(h) is a
structure-factor scaling function and (IF2|) is the
atoms-at-rest expectation value of |F?I. The impor-

tance of |&}l to the theoretical distribution of the
structure invariants suggests that an essential criterion
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for the ‘correctness’ of an estimated |E,! value is its
similarity to the ‘true’ normalized structure factor

|&pl = 1&}1/eV2.

This assumption is the basis for an earlier study of
normalization procedures by Ladd (1978). The most
critical measure of an estimated normalized structure
factor is the reliability of the structure-invariant
relationships they form with each other. This is the
principal test applied to normalized structure factors
estimated in this study.

The normalized structure factor squared |E?| is
essentially the ratio of scaled measured intensity |/
to the intensity expected for a random distribution of N
atoms at rest. If a particular measured intensity is
significantly different from its expected random-atom
value, then the value of |E2| will depart significantly
from 1-0. The magnitude of this departure indicates the
sensitivity of that reflection to non-random aspects of
the structure, or, in other words, to the ‘presence of
structure’. Reflections with |EZl values much greater
than 1.0 are of particular importance in direct methods
because of their dominance as Fourier transform
coefficients. Structure-factor magnitudes close to zero
also contain significant structural information but
because their phases are not as well defined, and their
contribution to the Fourier transform is small, they are
not generally used in phasing procedures.

The different approaches currently in use for
evaluating and applying the K(h) and {|F2|) compo-
nents in the normalized structure-factor equation (2) are
examined in this study. There are at least three ways of
formulating the scaling function K(h). The first is the
K-curve approach of Karle & Hauptman (1953) which
evaluates K(h) as the monotonically decreasing func-
tion best fitting the variation of |F[I/(IF21)*5 with
s2. A second method, which is closely allied to the first
is to represent K(h) as the exponential scale,
k exp(Bs?); and a third approach allows for non-
monotonic variations of K(h) with s2. Supplementary to
these basic approaches, the scaling function K(h) is
usually adjusted to ensure that the mean | EZ| is 1-0 for
either all data, or for different reflection classes (Dewar,
1970).
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Limited tests on several scaling functions have
already been reported by Ladd (1978). He concludes
that a minimum-K-curve approach produces the best
IE,| values; followed closely by the exponential scale
k exp (Bs?). These findings were based on the corres-
pondence between the estimated |E,| and I&,| values.
The validity of this conclusion makes the fundamental
assumption that |&| values provide the most reliable
phase relationships. This is not unreasonable since &7
is the basis in the probabilistic methods of structure-
invariant theory. Nevertheless, this theory has been
derived largely for P1 and P1 atomic distributions and
it remains to be shown that |&,| values necessarily
provide the most reliable phase relationships for higher
symmetries, and for a range of structure types. This
study examines the reliability of 1&,| in terms of the
precision of the structure-invariant relationships, for a
variety of test structures.

Also encompassed in this study is an analysis of
alternative approaches to calculation of the atoms-
at-rest expectation value (| FZI). In the absence of any
structural knowledge this expectation value is assumed
to be the random-atom approximation,

<|F§1>=szf}, 3)

where N is the number of atoms in the cell.

If conformational information on a fragment of the
structure is available then the expectation value may be
expressed as a Debye scattering equation (Debye,
1915)

MM sin 4nsd;
(IR =eX2 fi i\ 4)
i ok 4TLS‘djk
where M is the number of atoms in the fragment.
When the orientation of the molecular fragment is
known, the expectation value becomes (Main, 1976)
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where P is the number of point groups in the cell.

When actual atomic coordinate information is
available the expectation value is the atoms-at-rest
structure factor squared given by

M S 2
<IF,€|>=(ZZ]‘_}exp2nih.x,q) , (6)
J q
where S is the number of equivalent positions.

It would seem to follow from (3)—(6) that using the
expectation value with highest information content in
the normalization process provides improved estimates
of normalized structure factors. Such a rationale
presumes that knowledge of the structure provides
more precise estimates of the ‘true’ normalized struc-
ture factor and more reliable structure-invariant
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relationships. There is little direct evidence for this and
Ladd (1978) has shown that the Debye expectation
value reduces rather than enhances the precision of the
estimated | E},|. An explanation for this is that when the
random-atom expectation value is used, the | E2| values
differing significantly from 1.0 will contain more
(non-random) structural information. On the other
hand, if the Debye expectation value (4) is used,
structural contributions due to short-range trans-
lational symmetry tend to be suppressed in the resulting
IE,| values. In this study we examine these con-
clusions in terms of the precision of the structure-
invariant relationships.

Test structures

The refined structures of eleven organic and inorganic
compounds are used in this study to test the different
scaling functions. Details of these structures are given
in Table 1 and their molecular configurations are
shown below.
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The test structures were selected to provide a range
of space groups, centricity, and chemical composition.
Their data sets range from extensive (s2,,, = 0-42) to
limited (s2,,, = 0-22), and represent data collected from
both strongly and weakly diffracting crystals. All
structures were refined by conventional least-squares
techniques to R values given in Table 1.

HCPP is a penta-substituted cyclopentadiene
derivative, and KCPP is its potassium salt. The former
crystallizes in P1 and the latter in Pcab. CLEPX and
BEKA4 crystallize in P1. The former is a small
molecule with a chlorine atom and the latter has two
molecules per asymmetric unit. STIK4 is a light-atom
structure in the polar space group P2,. PDCPS,
CANON2, and ANTHI1 belong to P2,/c. PDCPS is a
heavy-atom structure with an extensive data set.
CANON?2 is a highly ordered structure with a pre-
dominant hexagonal motif and has a limited data set. It
also has a history of direct-method failures (Hall,
Raston & White, 1978). ANTHI1 is hypercentric.
CORT, a steroid, and TEMPL, a natural product, both
belong to P2,2,2,. The CORT data are supplied as the
standard light-atom test deck for the MULTANSO
system (Main et al., 1980). TEMPL contains a heavy
atom. K22BR is a light-atom structure in space group
Iba? and has a very limited data set.
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The data of test structures were processed with the
normalization routine EVAL, the structure-invariant
generation routine SINVAR and the phase-analysis
routine PHISIN (Hall, 1978). Another routine
ESCAN (Hall & Subramanian, 1980) was used to.
analyse the dependency of estimated |E,| values and
the calculated 1&,| on a variety of parameters.

Comparison of scaling functions

Two types of scaling functions are used widely in
normalization procedures. One is the exponential scale
k exp (Bs?), often referred to as the ‘linear’ scale
because of its linear relationship in a Wilson plot
(Wilson, 1942), and the other is the ‘profile scale’.

The profile scale describes the variation of the mean
values of IFZI/{IFily with s%. If this scale takes the
form of a monotonically decreasing function, it is
equivalent to the K curve of Karle & Hauptman
(1953). In this form the profile scale is often equivalent
to the linear scale of the Wilson plot (Karle, 1976). If,
however, the profile scale is to account for short-range
variations with s? due to radial scattering effects it
may be represented by a polynomial-type function, as
in the case of the MULTAN K curve (Main et al.,
1980), or as a smooth curve that follows the significant
variations in In (| F21/{|F21)).

In this study, both the exponential and profile scaling
functions are examined. The minimum K-curve method
of Ladd (1978) was not studied, principally because of
its close similarity to the exponential scale but also
because there seems less theoretical justification for its
use. The radial effects of short-range translational
symmetry on the scattering process result in decreases
as well as increases of the mean radial intensities
defined by a random-atom structure. Since the random-
atom structure is the basis for calculating the quasi-
normalized structure factor |&}l, it is logical that the
function K(h) should attempt to scale values to the

Table 1. Test structures

R = Y|IF,| — |\F,||/2IF,l. Bis the overall temperature factor.

Formula Space group R value B (AY» S s Reference
HCPP C,H,0, Pi 0-037 4-6 0-29 (a)
CLEPX C3oH,Cl, pi 0-037 4.0 0.25 (a)
BEKA4 CysH N, Pi 0-055 4.5 0-24 (a)
STIK 4 C,H,,0, P2, 0-050 4.8 0-36 (a)
PDCPS C,H,,CL,FPPdSb, P2/c 0-051 3.6 0-42 (@)
CANON2 CsH 505 P2,/n 0-058 3.8 0-24 (®)
ANTH]I Cy,H, 0, P2/c 0-034 4.5 0-36 (@)
TEMPL C,H4,CIN,0, P2,2,2, 0-056 4.4 0-29 (@)
CORT C,H,50, P2.2.2, 0-058 3.3 0-32 (©
K22BR C3H 50, Iba2 0-049 4.8 0-22 (a)
KCPP C,H,KO,, Pcab 0-042 3.2 0-36 (@

References: (a) Skelton & White (1981); (b) Hall er al. (1978); (¢) Declercq, Germain & Van Meerssche (1972).
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median line between these positive and negative fluc-
tuations; or, when it is required that the Debye
scattering effects be reduced in the estimated |E,!
values, the profile form of K(h) should be encouraged
to follow these fluctuations. The concept of a minimum
K curve is therefore difficult to justify. Certainly, the
K-curve method of Karle & Hauptman (1953) uses a
mean, not a minimum, fit of the data points and this is
equivalent to the exponential scale k exp (Bs?).

The above methods for evaluating K(h) do not
require that the overall mean value of 1E2l be
necessarily 1-0. This is, however, a normalization
requirement and is easily achieved by rescaling the
initial estimates of | EZ| calculated with K(h) with the
factor 2. m/>. mIE}l. When this factor is applied to all
data the process is referred to as overall rescaling.
Alternatively, if it is applied to individual classes of
reflections it is referred to as index rescaling (Dewar,
1970). Index rescaling ensures that each reflection
group has a similar spectrum of large and small |E,|
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values and therefore each group has an equivalent
influence on the phasing process.

It is well recognized that the application of index
rescaling can be of benefit in the analysis of structures
with a predominant subunit. The presence of a
substructure exaggerates the intensities in certain
reflection classes and makes the elucidation of super-
structure difficult. However, index rescaling does have
its drawbacks. In particular, its use without careful
consideration of scaling effects removes from the
estimated |E,| values structural information that is
then inaccessible to the phasing process. The validity of
routine application of index rescaling and its effect on
the reliability of structure-invariant relationships are
also considered in this study.

To compare the various scaling options four dif-
JSerent estimates of | E\| were used. These estimates were
calculated with the program EVAL (Hall, 1978).

Estimate 1E,|, is calculated with the exponential
scale function kexp(Bs?) and the random-atom

Table 2. Comparison of |& (h)| and |E (h)|

All values of | E, (h)| are estimated using the random-atom expectation value except for the values in brackets where the Debye value
was employed. AE2 and AE2/&? are the mean difference and the mean fractional difference between the estimated |E,(h)! values and
the calculated |&(h)| value. nref is the number of reflections used to calculate the means.

(@) For 1 & (b)] > 0 (all data)

nref AE? AEY/&? AE?

HCPP 2167 0-33 0-54 0-39
CLEPX 2138 0-26 0-42 0-30
BEKA4 5413 0-39 0-67 0-44
STIK4 1099 0-31 0-44 0-36
PDCPS 7493 0-32 0-63 0-33
CANON?2 1652 0-33 0-42 0-43

(0-33) (0-45) 0.41)
ANTHI 2196 0-31 0-57 0.38
TEMPL 1874 0-35 0-56 0-39
CORT 1603 0.29 0-41 0.35

0:31) (0-46) (0-35)
K22BR 1832 0-43 0-60 0.48
KCCP 3943 0:36 0-80 0-38
Mean 0-34 0.55 0-39
(b) For 1&(w)! > 1.0

nref AE? A4EY &? AE?

HCPP 702 0-69 0:30 0-83
CLEPX 700 0-49 0-22 0-61
BEKA4 1699 0-80 0-32 0.-94
STIK4 404 0.52 0-25 0-62
PDCPS 2180 0-68 0-28 0-69
CANON2 446 0-87 0-31 1.15

(0-85) (0-34) (1.08)
ANTHI 574 0.-77 0-29 0-99
TEMPL 685 0-58 0-28 0-65
CORT 549 0-55 0-27 0-65

0-57) (0-28) (0-66)
K22BR 678 0-76 0-36 0-86
KCPP 1085 0-68 0:30 0-76
Mean 0-67 0.29 0-80

AEY/ &? AE} AEY/&? A4E? AEY &?
0.57 0-36 0-56 0-40 0-59
0.-45 0-27 0-43 0-31 0-46
0-69 0-40 0-68 0-45 0-70
0-48 0-32 0-45 0-36 0-49
0-64 0-35 0-67 0-35 0-67
0-52 0-38 0-50 0-47 0-60
0-51) (0-40) (0-52) (0-46) (0-59)
0-65 0-31 0-57 0-39 0-65
061 0-36 0-57 0-40 0-61
0-49 0-31 0-45 0-37 0-52
(0-49) (0-33) (0-47) 0-37) (0-52)
0-65 0-48 0-60 0-49 0-66
0-81 0-40 0-87 041 0-87
0-60 0-36 0-58 0.40 0-62

AEY &? 4E? AEY&? AE? AEY&?
0-34 0-75 0-31 0-86 0-35
0-27 0-52 0-23 0-63 0-27
0-37 0-83 0-33 0-97 0.38
0-29 0-54 0-25 0-63 0-30
0-29 0-74 0-31 0-75 0-32
0.42 1-01 0-36 1-24 0-44
(0-40) (1.05) (0-37) (1-20) (0-43)
0-36 0-77 0-30 0-99 0-37
0-32 0-58 0-29 0-66 0-32
031 0-57 0-28 0-70 0-33
(0-32) (0-60) (0-29) 0-71) (0-34)
0-40 0-76 0-36 0-86 0-40
0-33 0-78 0-34 083 0-36
0.34 0-71 0-31 0-83 0-35
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expectation value. The values of B (see Table 1) used in
this function were obtained from a Wilson-plot fit based
on positioned-atom expectation values [see (6)] cal-
culated from the refined atomic coordinates. The scale
k is evaluated by overall rescaling.

Estimate |E, |, is calculated from a profile scale and
the random-atom expectation value {|F?|). The profile
scale takes the form of 41 values of K(h); (i = 1 to 41),

={—, 7
SIFEH | 7

averaged for shells of reciprocal space bounded by
equal intervals of s between 0-0 and s2,,. These shells
were symmetrically overlapped to minimize the
statistical fluctuations and to provide a relatively
smooth variation over the 41 ranges. The degree of
overlap ensures at least 200 contributing reflections to
the mid-range (i = 20). The profile scale was applied by
a simple linear interpolation of the 41 values of K(h),
and was followed by overall rescaling.

Estimates of |E,|, and |E,|, are calculated using
identical procedures to |E,|, and |E,l,, respectively,
except that overall rescaling is replaced with index
rescaling based on the eight separate hkl-parity groups
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Methods for comparing |E,| and | &,

The rationale for using the calculated structure
factor 1&,| as a posterior measure for the correct
normalized structure factor has already been discussed.
In this study, each of the four estimates of 1E,! are
compared with 1&,| using the program ESCAN (Hall &
Subramanian, 1980). The definitions of mean dif-
ferences AE, and AE? are

4E, = |(IE, 1), — 1&,| ®)

and

AE} = |(IER)), — 1 &1 9)

The values of 4E} and AE2/1&3%I are shown in Table
2 for 1&,] > 0-0 and &, > 1-0. The differences are
calculated as the mean of the sum individual differences
{ie. [ZmAER)/[> mliand [2 mdAE2/1&A1/(2 ml} for
each of the 41 shells of reciprocal space. These show
that the mean difference, 4E? and AE?2/|&2|, between
&4 and &%, are smallest for |Eyl,, the estimate
based on the exponential scaling function, and an overall
rescale. The average mean of the differences for all test
structures (Table 2) indicates that the above com-
bination produces |E;| values closest to |&,], whereas
the combined profile scale and index rescale produces
the worst agreement.
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Fig. 1. Plots of IEX(h)| and 1&%(h)| versus s* for the structures (@) BEKA4, (b)) CANONZ2, (¢) CORT and (d) KCPP. The expectation value
used in estimates of | E2(h)! is based on the random-atoms-at-rest approximation. The numbers 1—4 correspond to the subscripts of the
four different estimates of | E2(h)! (see text). The solid lines connecting the points denoted by ‘0’ represent the mean values of the ‘true’
normalized structure-factor squared. If data points overlap, the largest number has precedence. The vertical dotted line is at s2 = 0-18.

The horizontal dotted line is at | E2| = 1-5.
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The difference between |&32l and |E}l, as a function
of s? is illustrated in Figs. 1, 2, and 3 for the test
structures BEKA4, CANON2, CORT, and KCPP.
These four test structures were selected as being

NORMALIZED STRUCTURE FACTORS. I

representative for a range of structural types. Fig. 1

shows the variation of I&2 with s? as a solid line
(connecting ‘0’ data points) with different |E?| esti-

mates as data points numbered 1, 2, 3, and 4. In all plots
the highest numbered data points have precedence and
this means that a 3, for instance, will obscure a 2, 1, or
0 in the same position.

The relative variation of |&,| and |E,| is consistent

for all of the eleven test structures. In all cases there is a
relatively close agreement between |&,!, 1E,l, and

1 2 1 2 1 : 1 1 2 : N L
' - 1 1 1 I
3 | 109
3_1
313 4
0. 92| 1 4 t oo}
442 . ‘
2
3a
© 84 11 L 0. a4k 2
2 4
0. 77] b 3 aaa aa?
. . 2141 0.77 24 .
4 42 4
) 224 444 aas 3
2 2_4 224
0. 69 az 2 . a9
) i
]
3
0 61 !
2 o 6t 2
3
s i
o 33 33 L 1
A aalld 0. 39) 5
.................... ey B e .-
0 43§ 4‘ 3.
33 a1 0 491
4 1 33 3
23 3
.
o 38 23 o. 20}
43
w1
0 30 l&l
PREE o 20f
448 a
2 1
3
023 31 0.22
o1} 3 0 14
1 2
4
1
0 o4 0 oata
L bl L 1 L 1 L 1 —u
o bz 555 L LN T TTY TR o o 0 097 G 669 T 100 ST T 163 0 198 ) T 236
SINCTHETA) /LAMBDA SOUARED SIN(THETA) /LAMBDA SAUARED
(@ ®)
1 2 i 2 L 1 L 1 1 L 1 1 1 I X z : 1
1 oof 1 oof 0
4
a2
g 31
o 92} 0 92 iz
a }
2
0 B84 0 84 3
4
34
1
o 77| 0 77] 331 _2
. 2
2 44‘ 4
11
4 - 2
0 &9 2 2 0 69 !
. 2 a 2
4
2 3T,
0 &1 2 0 &1} 3 1 2
4 4 44 2
4 a . 1142
42 4 4 44
42 . 332 3 3 3 3 k] 4222 3
0. 3 2 12232 1 0 331 4 4 2 2
2 2 111313 213 22_234"2
0.5‘ 2 ‘33 l.él‘;;: 0 4% :‘I
2 Y 4422 2 4 2 31
4 2241 2 2 3
3 124 42 1
o 20§ 4 3 oo 2 21 g
- 1 . 3
2 +* . % 3 F 2 3
. 2_3 23 =“‘4 3 ) !
oaof32_2 & 4 a o. 30t 3 1
2 4 _33 111 : 2 237
) 2 33 ' 2
o 22 3 _33°% 1 SR
33 3 11 [ o I,
a1
11 ! 23?
0.14 11 of’?
1
!
©. o¢f [ 0. 0¢f
z 1 § 5
o.08% LY~ LR 0. 166 ) 0. 245 () X 0. 0. e -1

Fig. 2. Plots of mean AE2(h) [see (9)] versus s2. For other details see the caption for Fig. 1. The horizontal dotted line is at 4E* = 0-5.
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Table 3. Mean systematic deviation of E(h) from & (h)
All values of |E,(h)! are estimated using the random atom expectation value.
~ 41 ~ ~ _ 41 _
AE (h) = {z LE, ()i — xg(h)u,}/m AE2(h) = {z (E2(h) — gZ(h)J,}m.
=1 i=1
(@) For 1&(h)| > 0-0 (all data)* (b) For &(h) > 1-0*
AE, AE? AE, AEY? AE, AE} AE, AE} AE, AEY AE, AEY AE, AE! AE, AE?
HCPP 0.25 0-46 0-52 1-36 0-25 0-48 0-52 1.38 HCPP 0-67 1.76 1.22 3-89 0-71 1.-88 1-23 4.00
CLEPX 0-18 0-34 0-39 091 0-17 0-32 0-39 0-92 CLEPX 0-49 1-16 0-85 249 0-51 1-17 0-85 2.49
BEKA4 0.23 0-52 0-77 1.97 0-22 0-52 0-78 2.01 BEKA4 0-99 2.45 1.62 5-15 1.00 2-51 1.64 5.25
STIK4 029 0-45 0-64 1.45 0-27 0-45 0-64 1-46 STIK4 0-61 1.47 1.22 3.52 0-61 1.-52 1-25 3.62
PDCPS 0-15 0-29 0-21 0-49 0-19 0-61 0-20 0-56 PDCPS 0-36 0-66 0-54 1.42 0-59 0.87 0-51 1.52
CANON2 0-61 0-87 0-91 2-24 0-47 0-89 0-92 2.29 CANON2 1.25 2-63 1-96 6-71 1-29 3-38 1.92 6.53
ANTHI 0-12 0-28 0-67 1-78 0-12 0-30 0-67 1.78 ANTH! 0-38 0-88 1-42 5-.32 0-39 1.00 1-41 5.25
TEMPL 0-27 0-67 0.73 1.66 0:-27 0-66 0-73 1-66 TEMPL 0-70 1-72 1-34 3.68 0-71 1-71 1.33 3.66
CORT 0-25 0.-74 0.77 1.72 0-25 0-72 0-82 1.92 CORT 0-76 2-19 1.09 3-42 0-72 2-03 1-23 3.93
K22BR  0-43 0-83 0-90 2-05 0-43 0-84 0.90 2.02 K22BR 1-13 2.75 1-45 4-19 1-15 2.76 1.46 4-14
KCPP 0-17 0-53 0-50 1-30 0-20 0-54 0-51 1.25 KCPP 0-37 0.75 1-40 3-99 0-41 0-88 1.33 3.81
* Numbers of reflections used to calculate the means are as given in Table 2.
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Fig. 3. Plots of the mean ratio AE2(h)/| 2| versus s. For other details see caption for Fig. 1. The horizontal dotted line is at 0-5.
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|E,l;. This correspondence is also evident in the plots contain both the random deviations associated with the
of AEZ and AE2/1&}| versus s? (see Figs. 2 and 3). Both  individual estimates of &, and |E,l, and the sys-
these plots show the larger differences of 4EZ and 4E7  tematic deviations of the mean |E,| from the mean 1&,!.
arising from the profile scale. The overall increase in  These measurements constitute the fotal deviation —
these differences as a function of s? is the subject of random plus systematic — associated with the estimates
another study (Hall & Subramanian, 19825). of |E,l. The systematic component is present because

It should be stressed that the difference measure- the mean value of |E,l, in each range often departs
ments shown in Figs. 2 and 3, and listed in Table 2, significantly from the mean |&,| for that range. That is,

1 A1 1 1 1 1 L. 1 1 1 1 1 1 L 1 1 L 1
4. 00} } 4 o9
2|
1
2. 49 2. 49 [ 3
1
32
3. 08 23 3
2. 90 213
L) 4]
3 a
.
3 o) 2. 084 a N
. 11 2
3 44
3 2
2. 75 2.7% 5 H
1g2
4 4
3
2 44 2. 44 (e}
f]
22
33 a4
2 19) 213t .
,,,,, 1422
........... §223
1|1 1.etf r<x
.
a1
43
1 0] “ 1. 50+ ‘?l
3
4 gl
4
' 19) A 119 41
3 41
3
P 4
o eg| 3 o-ear 3!
. 3
83 a1
0 54 4 0. 36| 43
‘53 441
31
ozs/ o 25| /
2 2 2 ) P L L I L 1 1 1 2 1 1 I x 1
0 1 2 3 & 4 0 1 2 3 & 4
1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 L 1 1
4 00 4. Q0F
1
3 49 2. 69} -
11 2
122 3
3 34 3 38 -
a3
1 11 1L / e
Py 22 344
2 04 E] 133 2. 06l 2
a / 4
222 44 222‘
2 79 244 2 79| el
2 2 . 2442
) . i
2 a4 L 12 2 aat 33
23 5%
2‘ 14
a2 13 14 2 13 :‘]i
3 24
........................................ LA e i i e e i, - 2 B LR R R
13 :
102 .
181 324 1. 81 4
144 4
H
I3
2 a
1 30| L 1. 504 a
3 4
4 4
. 3
4 .
1 19| 1 119
‘ .
4 4
1 1
4 .
0. 88| 4 0. 88|
lj .
a 4
1 4
0. %8} . 0.36 .
44 43
3 43
0. 23] o:s/
1 1 1 1 1 1 1 1 1 1 e 1 1 L 1 1 1

Fig. 4. Plots of |E (h)| versus 1&(h)l. The solid line represents the condition |E,(h)I/I&(h)l = 1.0. For other details see the caption
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the first moment of the differences, 4E, = |E,| — |El,
representing the systematic bias of the measurement, is
not zero. This systematic bias component is evident in
Fig. 1 and is summarized in Table 3 as the overall mean
difference, AE,, for all ranges. This table shows clearly
the extent of the systematic differences between
calculated &), and the various estimates of | E,].

The agreement between |E,| and |1&,| was also tested
by plotting the difference parameters against |Fyl, &1,
and &2. A modified version of the program ESCAN
(Hall & Subramanian, 1980) was used to plot 1E,l,,
AE, and AE,/1&,| versus |F,l, and versus |&,l;
AE,/\&,| versus oF,/\Fyl; and AEY/I&} versus
o2 F2I/\F}l. A selection of these plots (IE,l, 4E,, and
AE,/1&,| versus 1&,l) is shown in Figs. 4, 5, and 6,
respectively, for the structures BEKA4, CANON2,
CORT, and KCPP.

In Fig. 4, 1:1 agreement between |E,l and |&, is
shown as a solid line. The agreement for the mean
values |E,! has little systematic bias for 1E,! < 2-0.
However, above this value the tE,| values tend to be
lower than corresponding |&,! values, with the large
differences occurring for the estimates | E, |, and | E, |,.
The magnitudes of these differences with respect to | &,
are illustrated in Figs. 5 and 6.

The conclusions to be drawn from these com-
parisons are inescapable. Firstly, the exponential scale
function results in | E,l estimates that are closer to | &,
than those estimated from the profile scale. Secondly,
the overall rescaling provides better correlation between
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|&,l and |E,| than the index rescaling. The tests for all
eleven structures are unanimous in this verdict.

The choice of expectation value (| F21)

The random-atom expectation value &2, f? was used in
all of the above scaling function tests. The question of
whether this is necessarily the best practice, or provides
the most reliable | E,|’s for a phasing procedure, must
now be answered.

It is important to emphasize that phase information
calculated from partial structure knowledge and used
with structure-invariant relationships is not in question
here. This has been shown to provide substantially
improved reliability in the application of these relation-
ships (Main, 1976; Hall, 1978). What is at issue is the
practice of estimating | E,|’s with other than random-
atom expectation values and thus modifying the
structural information passed on to the phasing
process.

Only the Debye expectation value [see (4)] was
tested in this study. There were several reasons for this.
The molecular conformation is usually the only
available structural information. It is also the pro-
cedure recommended in some programs to improve
normalization. Furthermore, the phase information
extractable from the Debye expression for use in the
structure-determination step is negligibly small and
need not be considered in this assessment.

1
0 123 0 182 0 202 0 241

SIN(THETA) /LAMBDA SQUARED

(b)

1
° © 045

0 oas

Fig. 7. Plots of the ratio In[1F?I/{IF)| versus s? for (a) CANON2 and (b) CORT. The solid line through data points O and @ is the ratio
calculated for the random-atom expectation value. The @ are sample points for inflexion-point least squares (Hall & Subramanian,
1982a). The asterisk data points (*) correspond to the ratio evaluated using the Debye expectation value.
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Some of the rationale opposed to the use of the
Debye expectation value has already been discussed.
Previous tests (Ladd, 1978) suggest that indiscriminate
use of structural information in the estimation of | E; |
values can be detrimental. The results of the scaling
tests described above also lead, albeit indirectly, to a
similar conclusion. This is because the application of a
profile scale is equivalent to the use of the Debye
expectation value (see Fig. 7). The profile scale
provided consistently less correlation between | E, | and
|& ! than alternative approaches (vide supra).

The CANON2 and CORT test data were used for
the comparison of the Debye and random-atom
expectation values. These are typical of structures for
which reliable conformational information is often
available. Only the rigidly bound non-hydrogen atoms
were included in the calculation of the Debye expec-
tation value. Fig. 7 shows the Wilson plots for both the
random-atom and Debye expectation values. In Table
2, values in brackets correspond to the mean values of
AE? and AEY/1&}Y for the estimates based on the
Debye expectation value. Comparison of these values
for the four |E,|, estimates, and the two distinct
expectation values, indicates that the use of random-
atom expression (3) provides | E| values closer to |&,!
than the Debye expression (4). It also confirms that the
combination of exponential scale function and overall
rescale produces consistently better correlation between
|E,| and 1&}|. These conclusions are reinforced by the
plots of IEZl and |1&2 versus s? (see Fig. 8) and by a
comparison with the equivalent plots of Fig. 1.

In summary these tests support the conclusions of
Ladd (1978) that the routine application of the Debye
expectation value is unwarranted in normalization
procedures.

The reliability of phase relationships

In the preceding two sections it was observed that ‘best’
IE,! values are obtained by applying the combined

Last N 1
12 FE) : 3
41 : 3
3 o 4
. 23,4 . 3 3 4 23
v 023 0412 ) 2 a 4
14 228 3 24 . 1 22
2 2 42 21 . 244 1
Q) 4 1, 24832 22 3443 . 2
o ‘2: O\H\S 4 4“2 42
H ° 4 /13
071
o. 7o 2 71 3a 3
i3, 1 t
oa 2 3 3
o 11
0. 634 013433
4
— L -
0.6% 0. 037 0 069 S 100 0. 131 0. 163 0. 194 0. 225 0. 2%
SIN(THETA) /LAMBDA SQUARED

(@)

587

exponential scale, random-atom expectation value and
overall rescale factor. In this part of the study it will be
shown that the ‘true’ normalized structure factor |&2,
and the |E;| estimate closest to it, provide the most
reliable structure-invariant relationships.

The triplet and quartet structure-invariant phase
relationships

w; = o(h)) + o(hy) + o(hy); > h,=0  (10)

4
wa = o(h)) + ¢(h,) + ¢(hy) + o(hy); > h, =0 (11)
were generated for each structure, and for each
estimate of |E,l,, using the program SINVAR (Hall,
1978).
The probability thresholds,

Ay=2N"'"2\E, E, E, | (12)
B,=2N~'IE, E, E, E, |, (13)

used in each case and the number of triplets and
quartets generated are shown in Table 4. For quartets,
only those cross-vector sums

X=1E, ., + Eq ., + En n (14)

(Hauptman, 1975) outside a preset ‘window’ defined
by values X, and X, were analysed (see Table 4).

The structure-factor phases calculated with the
refined coordinates were substituted into (10) and (11)
to obtain y, and w, (base modulo 2n). The y, values
were analysed in two categories those with X > X,
(referred to as ‘positive quartets’ PQ) and those with X
< X, (referred to as ‘negative quartets’ NQ). For large
B, values the expected value of y, for PQ’s, (v,), is
zero, and for NQ’s the value of (y,) is 7 (Hauptman,
1975). Similarly, for large A;-valued triplets the value
of {y, is assumed to be zero.

One measure of the suitability of | E,I’s in phasing
procedures may be gauged from the percentage of
structure-invariant violations. A violation occurs if the
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Fig. 8. Plots of IE2(h)| estimated by using the Debye expectation value and 1&2(h)! versus s* for (a) CANON2 and (b) CORT. For
other details see caption to Fig. 1.
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v value calculated from the refined phases of the
known structure exceeds its corresponding expectation
value {(y) by more than 7/2. Table 5 lists this
information for the triplets and quartets generated for

C e o
T O —_ —~ . . .
;>’~§§' > SSRSCRIRIA=T 1R |&n! and the four different estimates of | Eyl. With few
a; 5 == 9= o exceptions, the relationships resulting from the &,

e . .
5% ° N N = |Eyl,, or |Eyl; values produce fewer violations than
| ~ N O —_—n <t . .
8= 3 HE I8=aeRBET T2 | |Eyl, or |E.l,. This is borne out by the mean
w2 - . .

i it S — — percentages listed at the bottom of Table 5 which
iiz T SESESR SERggsa indicate that for these test structures |Eyl, and |1&),| are
:@‘; NNN—oaNd—~N—~7 = of similar reliability. The use of Debye expect-ation
g N o—oton@omo@ | o values to evaluate | E}, |, results in some decreases in the
REZ T SXES T mEe—== |z number of violations for CANON2 and CORT (see
2 :g _ = bracketed values in Table 5) but on the whole their
“: —moloolnooOt:l\onc«-n o . e . . . .

eT W IR2IZEIINE P reliability is less. In assessing these results, it is
Z3 5 - - important to remember that percentage violations may
i 2% L EgInaafoaxibeg not be well suited to testing non-centrosymmetric
k] R QOQNIQ @ =RzZzZTe structures with unrestricted phases. In addition, they do

S 8% _ _ not take into account the expected reliability of

5§ T=E S =g BI"RISRIZ | g individual invariants in the phasing process. For

3 = % = instance, a triplet with 4 = 5.0 contributes to the

S = 2 g o sRasss cgex g E violation statistics identically to one with 4 = 1.0. This

=g < Jgoomwgees - can be misleading because the former triplet is usually

S & P 2 R V- more heavily weighted in the phasing process, par-

S 25: 8853233352885 8 ticularly in the critical early stages.
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objective was to examine the form of the expectation
value (I FZI) to be used in the Wilson plot. To achieve
these goals, various scaling functions and expectation
values were tested against eleven refined structures in
two separate stages. In the first stage the correlation
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Table 5. Percentage of invariants violated

All values of IE,(h)! are estimated using the random-atom expection value, except for values in brackets where the Debye value

was employed. A structure invariant is designated as violated if | y —

Cw)yl > n/2. T triplets; PQ positive quartets; NQ negative quartets.

11 E,! |E, | E,) &21

Test T PO NQO T PO NQ T PQ  NO T PO NO T PO NQ
HCPP 39 00 19 60 01 27 63 02 54 55 00 64 65 00 103
CLEPX 0.8 0.0 123 2.4 06 1227 24 05 109 2.5 07 222 2.1 08 89
BEKA4 69 1.2 397 48 06 353 7.6 2.7 372 52 0.7 413 7.4 3.6 383
STIK4 7.4 1.6 103 7.9 39 750 92 7.1 250 7.8 3.7 196 101 5.8 24-4
PDCPS 00 00 — 00 00 26 00 0.0 — 00 00 — 00 00 —
CANON2 105 08 00 98 04 1.6 115 2.7 159 109 0.8 168 122 22 316
(9-8) (-1 (11:2) (11-5)  (1-7)  (6-6) (10-9) (1-0) (37-2) (12:6) (2:0) (37-3)

ANTHI 78 00 49 60 00 1.6 74 02 181 63 00 62 77 04 172
TEMPL 66 4.5 262 63 24 352 88 32 51.8 67 21 41.0 88 56 562
CORT 113 53 282 106 45 524 128 0.0 49.0 11.0 40 71.0 141 0.0 531
(11:6)  (0-0) (50-0) (13-3) (0-0) (48-9) (13-3) (3-8) (63-1) (14-2) (12.9) (30-8)

K22BR 128 — — 74  — - 123 - = 7.5 — - 12 - —
KCPP 3.0 2.5 306 41 57 41.9 3.7 209 280 83 4.0 41.9 81 12.0 371
Mean 65 1.6 154 59 1.8 204 75 3.8 232 65 16 266 81 3.0 277

Table 6. Weighted r.m.s.d. y of invariants

All values of | E,(h)| are estimated using the random-atom expectation value, except for those in brackets where the Debye expectation
value was employed. The r.m.s.d. value [see (15) and (16)} for triplets (7} and quartets (Q) are in degrees.

1&1 1E, | | E,| oN 1E,|

Test T Q T Q T [9]) T 0 T Q
HCPP 21- 1 29. 2. 31 4. 28. 4. 32. 7
CLEPX 5 6- 13. 10- 12- 5- 13. 11- 11 6-
BEKA4 27. 71- 19. 48. 29. 57 14. 28. 28 63-
STIK4 47. 39. 48. 48. 52- 49. 47. 52. 52. 50-
PDCPS 0.0 0-0 0.0 0-0 0.0 0-0 0-0 0.0 0-0 0-0
CANON2 42. 4. 37. 3. 42. 16- 43 8- 48. 16-

(38) (8) 43-) (11) (42+) (234) (514 (174)
ANTHI1 28- 2. 3s. 1 39. 17- 34. 3. 40- 15-
TEMPL 46- 36. 47. 33. 52. 75- 47. 43. 43. 85-
CORT 54. 47- 55 45. 58. 48. 56- 66- 66- 73.

(574 (46-) (599 (50-) (58-) (65-) (61-) (63-)
K22BR 51- — 44. — 48. — 44. —_ 50- —
KCPP 20- 37. 24. 71. 21. 81- 38. 76- 76- 86:
Mean 31- 24. 32. 26- 35. 35 34. 32. 41- 40-

between the ‘true’ normalized structure factor, |&,], and
each of the |E,| values estimated from the com-
binations of either the exponential scale or profile scale,
and overall or index rescale procedure, was studied. In
the second stage, the reliability of triplet and quartet
structure-invariant phase relationships generated both
from the calculated 1&,] and the estimated values of
| E,| was investigated.

For all test structures the | E, | values estimated using
the exponential scale function were consistently closer
to &}l than those estimated with the profile scale. It is
noted that the discrepancies between &, and the
different estimates of |E,| usually increase with |&,l,
and it is the largest | E,| values that are often used in
the phasing procedures! The combination of exponen-
tial scaling function, random-atom expectation value,

and overall rescale was found to provide, in that order
of importance, | E, | values that had consistently better
agreement with the calculated values of |&,]. The
analysis of triplet and quartet structure invariants
confirmed that |&,| and |E, !, are, indeed, most reliable
for methods based on these relationships and, by
implication, for methods that also use structure-semin-
variant relationships.

It should be emphasized, however, that a funda-
mental assumption in this conclusion is that the
structure-invariant relationships with the highest over-
all reliability will provide the best chance for success in
a typical direct-methods procedure. This should not be
interpreted to mean that the most reliable set of
invariants will always provide the ‘best’ solution, or
even any solution, for a given structure and a given
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phasing procedure. The uncertainty in individual
invariant relationships and the relative instability of
existing phasing algorithms makes it possible for
less-reliable invariants to succeed occasionally where
more precise sets have failed. Nevertheless, it must
remain true that the most precise invariants have a
statistically better chance of providing a solution
independent of the methods used to apply these
invariants.

In summary, this study has shown that, for the
eleven structures examined, normalized structure fac-
tors, estimated from a Wilson plot using an exponential
scaling function, the overall rescale and the random-
atom expectation value are best suited for use in direct
methods.

The authors wish to acknowledge the assistance of
the Australian Research Grants Committee (Grant:
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Abstract

A reliable estimate of the overall temperature factor B
is shown to be important to the calculation of
normalized structure factors, and to the application of
structure-invariant phasing methods. Methods for
obtaining improved estimates of B from the Wilson plot
procedure are examined. The use of Bayesian statistics,
the inclusion of missing data, the application of
least-squares weights and the compensation for Debye
scattering effects in the Wilson plot are considered.
Estimates of B are compared for fourteen refined
structures, including three proteins.
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Introduction

The standard method for estimating the overall
temperature factor B and the structure-factor scale k
from measured intensity data is by a linear least-
squares fit to data in a Wilson plot (Wilson, 1942). In
this plot of In{IF2I/{|F2I>] versus s? the slope of the
fitted line is —2B and the intercept at s> = 0 is —2 In (k).
Because the Wilson-plot method is simple and com-
putationally convenient, it is widely used in many
crystallographic laboratories for scaling data. It is
therefore surprising that the computer programs
applying this technique often produce quite different
estimates of B and k from the same data. In fact, it is
not uncommon for estimates to differ by as much as a

© 1982 International Union of Crystallography



